
irregularities on the inside surface of the channel. Thus, there is a reduction in the 
width of the stagnation zone and, in accordance with (2), a reduction in negative pressure. 
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NUMERICAL MODELING OF THE UNSTEADY FLOW OF A 

VISCOUS FLUID IN ROTATING CHANNELS 

V. E. Karyakin~, Yu. E. Karyakin, 
and A. Ya. Nesterov 

UDC 532.516 

A finite-difference technique is proposed for calculating flows in plane 
channels with arbitrary curvilinear boundaries. The technique is used to 
study motion in a channel with a rotating section. 

Curvilinear rotating channels are an importantpart of modern gasdynamic equipment. As 
the fluid moves on the curved section of such a channel, the centrifugal forces which devel- 
op create a transverse pressure gradient. This in turn results in significant restructuring 
of the flow, the appearance of secondary flows, and, in some cases, the appearance of a sepa- 
ration region. Detailed study of these features is possible only on the basis of the Navier- 
Stokes equations describing the dynamics of a viscous fluid. 

The investigations [1-4] numerically modeled both laminar and turbulent flow in plane 
channels with an angle of flow rotation of 90 ~ . Straight sections were located before and 
after the rotating part. Calculations were performed in a broad range of Reynolds number 
and channel curvature radii. It was found that two separation regions may form; on the 
external wall in the rotation section; on the internal wall after the rotation section. 

Several methods are available for choosing the coordinate system when calculating 
flows in rotating channels. One approach employs a mixed system: cartesian coordinates for 
the straight sections and a polar system in the rotating part [2-4]. Here, certain difficul- 
ties are encountered in attempting to combine the solutions at the boundary between the 
straight and rotating sections. The best coordinate system [i, 5] is one in which the boun- 
daries of the test channel coincide with the coordinate axes. This is the system we will 
use in the present study. 

We will examine the unsteady laminar motion of a viscous incompressible fluid in a 
plane channel with arbitrary curvilinear boundaries. In the Cartesian coordinate system 
(Yl, Y=), the flow is described as follows in dimensionless form by the Navier-Stokes equa- 
tions 

I. I. Polzunov Central Boiler-Turbine Institute, Leningrad. Translated from Inzhenerno- 
Fizicheskii Zhurnal, Vol. 54, No. i, pp. 25-32, January, 1988. Original article submitted 
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Fig. i. Region of rotating channel. 

at ' o t /~  Oh', -~ Re ab,~ \'-~-y~ ] '  i---- I, 2, - -  O. ( 1 )  
. 091, 

Here and below, it is assumed that summation is performed from 1 to 2 over twice-repeating 
indices. 

We introduce an arbitrary curvilinear coordinate system x I = x1(yl, Y2), x= = x2(yl, Y2), 
which transforms the test region of the flow into a square with a side equal to unity (0 
x I ~ i, 0 ~ x 2 ~ I). In this system, it is best to write Eqs. (i) in tensor form: 

gkt 
av---A--~-~ vh (%vk) = - - v ~ P +  ~ v~ (VzVO, i = 1, 2, 
at (2) 

g~tv~vz=O. 
Here, v i and v i are the covariant and contravariant components of the velocity vector; V i 
is the symbol of the covariant derivative; gik are contravariant components of the fundamen- 
tal tensor [6]. 

Using formulas from tensor analysis, we can establish the connection between the con- 
nection between the components of the velocity vector in the coordinate systems (x I, x =) 

and (Yl, Y2): 

Og~ i Ox ~ ~Ox = Oy~ 
v ~ = u ~  v = u =  , u ~ = v =  - v =  . ( 3 )  

Ox ~ '  Og~ Oyi Ox ~ 

We similarly determine the tensor derivatives in Eqs. (2). The derivative 7kV s is 
transformed as twice the covariant second-rank tensor, the derivative Vk(vivk) is trans- 
formed as twice the covariant second-rank tensor and once the contravariant second-rank 
tensor, and Vk(Viv i) is transformed as thrice the covariant third-rank tensor. With allow- 
ance for the above, we have: 

V~V~= au------z-~,oY~ ag~ au~ ay~=a~.__m (4) 
Oy~ Ox k Ox I Ox ~ Ox l OXk'  

Vk (vm k) = _0 (u~uv) ag~ ag~ ax~ 
ay~ ax~ Ox ~ ay v 

a (u~u~) ay~ ax~ a (.Jmk) 
Ox k c?x ~ Og~ Ox ~ 

( 5 )  

k, Ox~ ax ~ o (~auv I ag~ ag~ og~ 
g 'v,~ (vlvi)  = = 

Oy 6 ag 6 og~ \ ~ ) Ox k Ox t Ox ~ 

Og B Ox h ~ Ox ~ Og~ / 8x ~ Oxh \ ~ x ~  )" 

(6) 

The symbol (^) is used to denote quantities calculated from the cartesian components 
of the velocity vector by means of matrices of the derivatives 3ya/3x i and ~xi/3ya, fixed 
at the point of differentiation Q [5]: 

~ = u~ (OgJax ~ )Q = v,~Oxh/ag~ (OgJOx ~ iQ, 
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Fig. 2 Fig. 3 
Fig. 2. Streamlines in a rotating channel in the steady-state 
flow regime (~= 135 ~ , Re = 1085, R = i, L~ = 1.9, L 2 = 3.8): 
I) ~ = 0.2; 2) 0.4; 3) 0.6; 4) 0.8. The dashed line shows the 
zone of reverse flow at t = 59. 

Fig. 3. Profiles of the longitudinal (vn/U, solid lines) and 
transverse (v~/U, dashed lines) physical components of the velo- 
city vector in the section x I = 0.6 in the steady-state flow 
regime (~ = 135 ~ , R = i, L I = 1.9, L 2 = 3.8): i) Re = ii0; 2) 
540; 3) 1085. 

i 

With allowance for (4-6), we can write the Navier-Stokes equations in a form not con- 
taining tensor derivatives: 

dv i @ . * c3p ~ I c) ( ~.hz avi ~ (7)  
0--7- + - -  (v'v~) ~- r \ - -  , 8x~ Ox* Re Ox ~. Ox z / 

gkl OVZ =0. (8)  
OX ~ 

We w i l l  use sys tem (7 -8 )  to  c a l c u l a t e  t h e  f low of  a f l u i d  in  a p l ane  r o t a t i n g  channe l  
with a wide inlet equal to unity (Fig. i). We will assume that the rotating part of the 
channel is formed by the arcs of two concentric circles with the central angle ~. The ra- 
dius of the inside wall is R. The inlet and outlet sections are formed of straight paral- 
lel walls with lengths of L I and L2, respectively. The values of L I and L 2 were chosen 
so that flow in the rotating part was slightly dependent on the boundary conditions at the 
channel inlet and outlet. 

We choose curvilinear system (x I, x 2) so that (Fig. i) it changes into a rectangular 
cartesian system on the straight sections and into a polar system on the rotating section. 
As the longitudinal coordinate x I we take the orthonormalized distance along the middle 
line of the channel, while the coordinate x 2 is reckoned along a normal to the outside 
wall. Here, all of the channel boundaries become coordinate lines. If we know the va- 
lues of the coordinate x I for points of the inside and outside walls: Y~i = Yli (xl), Y2i = 
Y2i (xl), Yle = Yle(Xl), Y2e = Y2e(X!), then we have the following relationship between the 
cartesian (Yl, Y2) and curvilinear (x I, x 2) coordinates: 

~1 = [~/1 i (.,1~1) __ Y18 (XI)] Xg-4 - Vle(Xt), 
(9) 

V2 = [V~i ~ )  - -  V2e (Xl)] ~ - ~  V2e (xl) �9 

Using Eqs. (9), we can easily find the matrices of the derivatives 8ya/Sx i and axi/ 
8y~ (i, ~ = i, 2) needed for the calculations. 

System (7-8) is closed by the following boundary conditions. Both components of velo- 
city v I and v 2 are assigned at the channel inlet (x I = 0). The standard conditions of 
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adhesion and impermeability v I = v 2 = 0 are adopted on the solid boundaries (x 2 = 0 and 
x = = i). At the outlet of the channel (x I = i), we write the conditions 

ax / ag2 ax i ay, --0, =0.  (10)  
Ox ~ vj .~y~ Ox z a92 Ox z Ox ~ 

The first condition of (i0) denotes constancy of the flow rate in a longitudinal sec- 
tion through an elementary cross section dx 2. For the cartesian coordinate system, condi- 
tions (i0) become the usual "mild" conditions. 

In solving the problem in physical variables, the pressure p is determined to within the 
additive constant. This constant is found from the condition: p = 0 at the point x I = x 2 = 
0. No other boundary conditions are assigned for pressure. 

To construct the difference sch4me, we draw a nonuniform net x I = xl(n = 0, 1 .... ,N; 
= 0, ~ : I), x 2 = x~(m = 0, 1 ..... M; x~ = 0, ~ = i) in the regionnof integration 

~u < xl _ 1 0 < x2 < i). The spacing for the coor~linate x I is chosen so as to be constant 
within the rotating part of the channel. In the straight sections, this spacing constantly 
changes in accordance with the law of geometric progression. Here, we have the denominator 
k I in the inlet part and k 2 in the outlet part. We also use a variable spacing for the co- 
ordinate x 2, with exponential condensation of the net near the channel walls. Here, the 
nodes of the net are found from the relation 

2 m = l q -  ln ( l+d~x2)  - - l n [ l + d 2 ( 1 - - x i ) ]  
M l n ( l +  d,) In (1 -}-d..) ' 

where d I and d 2 are parameters of the net condensation. We usually took d I = d 2 = i0 in 
the calculations. 

The sought network functions vl, v2, p will be determined on nets displaced relative 
to each other, as is done in the marker-and-mesh method [7]. In approximating the convec- 
tive terms of Eqs. (7), we will use the donor mesh scheme [7], designating the difference 
analog of the derivative 8(ViVk)/axk through Dk*(~i,~rk). The remaining space derivatives 
will be approximated by second-order difference expressions. Here, we will use D k to de- 
note the approximation of the derivative 3/8x k with respect to the adjacent nodes. 

We solve system (7-8) through the use of the following implicit multistep difference 
scheme (the superscript n is the number of the time layer): 

1 

6v? +-~ /At -~ D* v" v hn) ^ (1  1 )  ( i, = - -  D i p n +  Re- tDh (g~lD z (vf)) ,  

1 
^ n + ~ -  ( 1 2 )  g i k D h ( v ~ + ~ v i  " - - A t D ~ ( S p ) )  =0,  

1 

n+T ~ . , o  ,+l  vkn) Re- 'Dk(ghlD~(6vT+l)) ,  (6v~ +I --  6v~ )/At + u k  tovi , = - -  Di (6p) + (13) 

D~ + 1 :  D~ + ~O~ +1 , pnq-I : pn+ 6p. (14) 

E x c l u d i n g  t h e  f r a c t i o n a l  s t e p s  f rom Eqs. ( 1 1 - 1 4 ) ,  we can show t h a t  t h e  scheme a p p r o x i -  
mates  t h e  i n i t i a l  sy s t em of  e q u a t i o n s  ( 7 - 8 )  w i t h  s e c o n d - o r d e r  a c c u r a c y  w i t h  r e s p e c t  t o  t i m e .  
We will describe the main stages in the realization of this scheme. 

First we use assigned values of the network functions vl n, vg n, pn on the n-th time 
layer and we find preliminary corrections for the velocities ~v9 ~I12 (i = i, 2) from Eqs. 
(ii). Then using (12) - the analog of the Poisson equation forlpressure - we find a cor- 
rection for the pressure 6p through iteration. Iteration is again used with Eq. (13) to 
find the final corrections for the velocities 6vi n+1 (i = i, 2). After this, using Eqs. 
(14) to effect a simple conversion, we determine the values of velocity vin+1 (i = i, 2) 
and pressure pn+l on the new, (n + l)-st time layer. The procedure is repeated from the 
very beginning for each subsequent moment of time in the unsteady problem. 

The first two stages of scheme (11-14) are similar to the traditional, conditionally 
stable semiimplicit scheme. Completion of stage (13) makes it unnecessary to impose a 
strict limitation on the time step At. 
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Fig. 4. Distribution of the tangential compo- 
nent of the dimensionless shear stress along 
the internal (solid lines) and external (dash- 
ed lines) walls of the channel (~ = 135 ~ , Re = 
540, R=I, Lz = 1.9, L2 = 3.8): I) t = I0; 2) 
20; 3) 130. 

The procedure of finding the pressure on the basis of Eq. (12) occupies the central 
position in the calculation of viscous flow in a channel. The method used to find this 
pressure should be especially efficient, since it is realized in the form of iterations 
on each time layer. Equation (12) is supplemented by a term with the derivative with res- 
pect to the relaxation time 8(~p)/ST and is solved by a splitting scheme by means of succes- 
sive scalar trial rims along the directions x I and x 2. To speed up the iteration, we use 
a sequence of steps A~{AT0, A~I, ..., ~s} which ensures uniform convergence of the solution 
throughout the natural frequency spectrum of the problem. Analysis of the model equation 
with constant coefficients shows that in the case of an arbitrary curvilinear coordinate 
system, the set of steps can be obtained from the following formulas: 

A%= min[(Ax~)2/(2gl~)]/At, A~= A~_l/q,  

q=[~/(4N)]  2/~, r =  1, 2, . . . ,  s. 

A sequence of four different steps (s = 3) was usually prescribed in the calculations. 

To integrate Eq. (13), we again used an iterative scheme with splitting of the space 
variables. The character of the splitting was determined by the flow direction, which made 
this approach particularly effective for studying flows with recirculation zones. As a 
rule, the error was reduced at least one order after each iteration in the solution of Eq. 
(13). 

The above-described algorithm was used to calculate the viscous flow of an incompressible 
fluid in a rotating channel within the range of moderate Reynolds numbers I00 < Re < ii00, 
characterized by laminar motion of the fluid. The Reynolds number was determined from the 
width of the inlet section of the channel and the maximum value of the longitudinal cartesian 
component of velocity at the inlet. We examined different angles of channel rotation ~ = 
45, 90, and 135 ~ . The radius of the inside wall of the rotating part was taken equal to 
R = i. The calculations were performed on a 40 x 20 net. 

We studied unsteady flows of fluid from an initial state of rest. Beginning at t = 0, 
at the channel inlet we assigned a uniform profile of the longitudinal cartesian component 
of velocity U = U(x2). The transverse velocity was assumed to be equal to zero. 

Within this range of parameters, we reconstructed the development of streamline patterns 
and profiles of the longitudinal and transverse physical components of the velocity vector 
over time: 

vi v lg~  + v2g Iz v2 U n ~  - -  , - -  

V g "  , (IS) 

as well as the distribution of the tangential component of the dimensionless shear stress 
along the channel walls: 

1 Vg -e 
~ =  Re ]/-~-~-~ (V ~vOw' (16) 
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where g11 and g22 are covariant components of the fundamental tensor. 

In the case of high Reynolds numbers Re in a channel with a large angle of flow rota- 
tion ~, two zones of reverse flow develop and undergo transformation: on the external wall 
near the inlet in the rotating section, and on the internal wall immediately after the ro- 
tating section, and on the internal wall immediately after the rotating section. Figure 2 
shows streamlines for each case of motion: Re = 1085, ~ = 135 ~ . A circulation zone is first 
formed on the inside wall of the channel. A similar region is then formed on the outside 
wall. It reaches its greatest size (shown by the dashed line) at t z 60 and then gradually 
disappears. In this case, there is a simultaneous increase in the circulation region on the 
inside wall. The streamlines shown in Fig. i correspond to the steady-state flow regime. 

Figure 3 shows profiles of longitudinal and transverse velocity in the section A-A of 
the channel (Fig. 2) calculated in accordance with Eqs. (15) and referred to the cartesian 
velocity at the inlet U. At low values of Re (Re z i00), the distribution of longitudinal 
velocity is nearly parabolic in character. An increase in Re is accompanied by an increase 
in inertial forces in the core of the rotating part of the channel. This creates a trans- 
verse pressure gradient, with pressure being greater on the external wall than on theinternal 
wall. It follows from Fig. 3 that this leads to shifting of the maximum of longitudinal velo- 
city in the direction of the internal wall. At Re = 1085, a distinct flow core is formed 
along with gradient boundary regions and zones of reverse flow near the internal wall. The 
transverse component of velocity in the section A-A is an order lower than the longitudinal 
component. Some increase in this velocity can be seen with an increase in Re. 

Figure 4 shows the development of the tangential shear stress along the internal and ex- 
ternal walls of the channel overtime. These results were calculated from Eq. (16) for the 
case Re = 540, R = i, and ~ = 135 ~ . Near the beginning of the rotating section (x I z 0.2), 
shear stress decreases sharply on the internal wall and increases on the external wall. The 
opposite pattern is seen at the outlet of the rotating section (x I = 0.6). A certain asym- 
metry in the distribution of friction on the inside and outside walls is a typical feature 
of flows in rotating channels [I]. It also follows from the figure that at Re = 540 a short 
circulation zone is formed on the inside wall of the channel. 

Numerical modeling of flows of liquid in channels with different angles of rotation 
shows that a decrease in the angle ~ is accompanied by an increase in the number Re at which 
closed circulation regions are formed on the walls. 

NOTATION 

Yl, Y3, Cartesian coordinates; x l, x 2, curvilinear coordinates; ul, u2, cartesian com- 
ponents of velocity; vl, v2, and v l, v =, covariant and contravariant components of velocity; 
gik, gik, covariant and contravariant components of the metrix tensor; t, time; p, pressure; 
~, angle of rotation of the channel; R, radius of the inside wall; Ll, L2, length of the in- 
let and outlet sections; Re, Reynolds number, N, M, number of nodes of the difference net in 
the longitudinal and transverse directions; dl, d2, kl, k2, net condensation parameters; At, 
time step; A~, relaxation time step; ~w, shear stress on the wall. 
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